

11. Consider a circle of radius r. Fit the largest possible square inside it and the largest possible circle inside the square. What is the radius of the innermost circle?

PART-B

1. For t	he electroni	ic configurati	on 1s²2s²2p	⁴ , two of t	the possil	ble tern	n symbols are ¹ S and ³ P. The remaining term
is:							
a) ¹ D		b) ¹ F	c) ³ l	C		d) ³ F	
2. For o	one of the ele	ement variou	s successive	ionization	enthalpi	es are g	iven below:
IE	1st	2nd	3rd	4th	5th		
-	577.5	1810	2750	11580	14820		
The e	element is:						
a) P		b) Mg		c) Si		d) Al	
3. The	electronegat	ivities of H a	nd Cl are 2.1	and 3.0 re	espectivel	y. The c	correct statement about the nature of HCl is:
-	% covalent	b) 17% i		c) 50%		3 931 931 933 931 931 931 933 933 931 9	6 covalent
4. Wha	t is the term	symbol of N	²⁺ with elect	ron config	uration 10	$\sigma_g^2 1 \sigma_u^2 1$	$\pi_{\rm u}^{3} 2\sigma_{\rm g}^{2}$?
(a) ² ſ	lu (b)	¹ Σg ⁺	(c) ¹	Σg		(d) ² Пg	
5. The	pair of symm	netry points g	roup that a	re associate	e with on	ly polar	molecules is:
	v, D _{ooh}	b) C _{3v} ,	-	c) D _{2h}			d) C _{2v} , C _{oov}
-	$bF_5 \rightarrow B$,					
		→ [tert- butyl	$]^{+} + X^{-} + H_{2}$				
Then		- ,					
(a) H	CI	(b) HF	(c)	HBr		(d) HI	
7. [Cp ₂]	e]⁺ (ferrocin	ium cation) i	s given in co	loured and	d parama	gnetic.	The colour arises
due				1			
(a) σ	→ σ*	(b) π→л	* (c)	LMCT		(d) ML	СТ
8. The	experimenta	I magnetic m	oment of K	[Fe(CN) ₆] i	s 2.3µB a	nd is at	tributable to the
	-	e of a low-sp					high-spin Fe
(c) lo	w-spin Fe wi	ith orbital co	ntribution	(d) hig	sh-spin Fe	with o	rbital contribution
	-	1000		200 201 200 201 201 201 202000 201 201 2	Ca(OH) ₂ .	The pH	of the solution at 25°C is
	ess than 7			(c) Equa			Cannot predict
10. Ide	ntify correct	statement fo	or mercury a	s an enviro	onment p	ollutant	
(A)	arbanionic l	biomethylatio	on converts	it to MeHg	+		
(B)	hiol group o	f cysteine ha	s strong affi	nity for me	ercury		
(C)	nercury con	taining indus	trial catalys	release ca	aused mir	nimata d	disease
-	The correct a	answer is					
(a) /	A and B	(b) A an	d C	(c) B a	nd C	(0	d) A, B and C
11. The	m/z value c	of the detecta	able fragme	nt formed	by McLaf	ferty lik	e rearrangement of the following compound
in mass	spectromet	er is					
			0				
		w.					
			\sim	\sim			
(a)	43 (b) 58	(c) 72	(d)	49		
()	,		· / -	()			

			<i>b</i> 0, <i>b</i> (10, 11)	
12. A potassium salt 'A' re	eacts with dil. HCl	to produce a colourles	s gas. This co	lourless gas turns lime water milky
and the excess of this gas	destroys milkines	. The compound		
'A' is:				
(a) KCl (b) K ₂ SO ₄	(c) KNO₃	(d) K ₂ CC	D ₃
13. The reaction betwee	n red phosphoro	us and NaClO ₂ yield h	ypophosphor	ic acid. The molecular formula of
hypophosphoric acid is				
(a) $H_5 P_3 O_{10}$ (b)) H ₄ P ₂ O ₇	(c) H ₃ PO ₄	(d) H ₄ P ₂	O ₆
14. Identify the correct sta	atement			
When the ligand donc	t sterically contro	the coordination geom	etry then	
(a) 4 coordinate comp	lexes of Cu(I) is sq	uare planar geometry		
(b) 4 coordinate comp	lex of Pd (II) is tet	ahedral geometry		
(c) 4 coordinate comp	lex of Zn(II) is squa	re planar geometry		
(d) 4 coordinate comp	lex of Zn(II) is tetr	ahedral geometry		
15. Trimeric phosphozene			of this geom	etry. In
Contrast benzene deriv				
(a) more diffuse nature				
(b) more diffuse nature				
	•	es in non-planar struct	ure 🛆	
(d) weak pπ- dπ bond				
16. The shape of $[CIF_4]^-$ and	• • •			
(a) see-saw and linear		see-saw and bent		
(c) tetrahedral and line		square planar and linea	r	
17. Choose the correct or				
(a) $Ce^{+3} > Pr^{+3} > Dy^{+3} > E$				
(c) $Dv^{+3} > Fu^{+3} > Ce^{+3} Pi$	-+3 (d)	$Ce^{+3} > Pr^{+3} > Eu^{+3} > Dy^{+3}$		
18. The reaction of $CrCl_3$ v			ten has low y	vield
		duction of pink [Cr(NH		
a small piece of Na me			3/5CIJCI2. OII a	
			constant	(d) connat predicted
(a) increases	(b) decrease	· · · · ·		(d) cannot predicted
19. Which among the foll		Scorrect for F ₃ C-CF ₂ -CF	-3 :	
(a) all C–F bond lengt				a athan C. F.
		rbon atom are longer a	s compared t	o other C-F
bond at terminal o				
		rbon atom are shorter a	as compared	to other
C–F bond at termi	nal carbon			
(d) none of these				
20. Match the Column-I w	V.			
Column-I		olumn-II		
(P) Feritin		ron transport		
(Q) Vitamin B12	(II) Iono	-		
(R) Cytochromes		rgen transport		
(S) Valinomycin		ogen fixation mometallic enzyme		
		i storage		
		_		
4 RAJSI CHEMIST	RY POINT, Near G	opalpura Flyover, JAIPU	R VISIT US	@ www.rajsichemistrypoint.com

(a) P-VI, Q-IV, R-II, S-V (b) P-I, Q-III, R-VI, S-IV
(c) P-III, Q-V, R-IV, S-VI (d) P-VI, Q-V, R-I, S-II
21. The incorrect statement among the following is
(a) Mossbauer spectroscopy shows that the two Fe(III) ions in oxyhemerythrinare in
Different environment
(b) Oxyhemerythrin is diamagnetic and EPR inactive
(c) The blue color of oxyhemocyanin is due to LMCT
(d) O_2 bind with hemerythrin in O_2^- form whereas bind with hemocyanin in O_2^{-2} form.
22. Consider the following statement(s)
(I) Eu ³⁺ and Sm ³⁺ show abnormal magnetism
(II) For Eu and Yb third ionisation energy is highest among lanthanoids
(III) Actinoids show more variable oxidation states than lanthanoids
(IV) Absorption peaks of actinoids is broader than lanthanoids.
The correct answer is
(a) I and II (b) III and IV (c) II, III and IV (d) all are correct
23. The complexes $[Co(NH_3)_5X]^{+2}$ have charge transfer to metal band. The complex would
you expect to show higher wavelength of charge transfer band if X is
(a) F ⁻ (b) Cl ⁻ (c) Br ⁻ (d) J ⁻
24. Which of the following statement is not true regarding the carbine
(a) Schrock carbene behaves like a phosphorus ylide in some of its reactions
(b) The carbene carbon of Schrock carbene is nuleophilic in nature where as metal is
electron deficient.
(c) The metal-carbon bond of Fischer carbene has a relatively high rotational barrier
(d) The metal atom of Fischer carbene is relatively electron rich
25. The masses recorded when a substance is weighed 5 times are 10.8, 10.2, 10.6, 10.4
and 11 mg. The variance is closest to
(a) 0.50 (b) 0.10 (c) 10.6 (d) 0.75
26. Which of the following molecules would not give pure rotational spectrum?
H ₂ , HCl, CO, CH ₃ Cl, H ₂ O (liq.), NH3, NH ₄ Cl
(a) H ₂ , NH ₃ (b) H ₂ , NH ₄ Cl, CO
(c) H_2 , NH_3 , NH_4Cl (d) H_2 , H_2O (liq.), NH_4Cl
27. The anions in Fluorite structure are present in
(a) All Oh Voids (b) Half Oh Voids (c) Half Td Voids (d) All Td Voids
28. The order of increasing Bronsted acidity for the boron hydrides is
(a) $B_5H_9 < B_6H_{10} < B_{10}H_{14}$ (b) $B_{10}H_{14} < B_5H_9 < B_6H_{10}$
(c) $B_6H_{10} < B_{10}H_{14} < B_5H_9$ (d) $B_{10}H_{14} < B_6H_{10} < B_5H_9$
29. In the reaction,
$P + Q \rightarrow R + S$

The time taken for 75% reaction of P is twice the time taken for 50% reaction of P. The concentration of Q varies with reaction time as shown in the figure. The overall order of the reaction is :

30. The rate constant for a first order reaction is 6.909 min^{-1} . Therefore, the time required in minutes for the participation of 75% of the initial reactant is:

31. For the following reaction,

$$x \xrightarrow{k_{1}}{k_{-1}} 2B; B \xrightarrow{k_{2}}{K_{-1}} C, \qquad \underbrace{d[B]}{dt} \text{ is given by}$$
(a) $k_{1}[A] - k_{-1}[B]^{2} - 2k_{2}[B]$
(b) $2k_{1}[A] - k_{-1}[B]^{2} - k_{2}[B]$
(c) $\frac{1}{2}k_{1}[A] - \frac{1}{2}k_{-1}[B]^{2} - k_{2}[B]$
(d) $2k_{1}[A] - 2k_{-1}[B]^{1/2} - k_{2}[B]$

32. A first order gaseous reaction is 25% complete in 30 minutes at 227°C and in 10 minutes at 237°C. The activation energy of the reaction is closest to ($R = 2 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}$),

(a) 27 kcal mol⁻¹ (b) 110 kcal mol⁻¹ (c) 55 kcal mol⁻¹ (d) 5.5 kcal mol⁻¹

33. The Nernst equation for the reaction $A^{2+} + 2e \rightarrow B$, in terms of the free energy change is,

(a)
$$\Delta G = \Delta G^{0} + 2.303 RT \ln \frac{[B]}{[A]}$$

(b) $\Delta G = \Delta G^{0} - 2.303 RT \ln \frac{[B]}{[A]}$
(c) $-\Delta G = -\Delta G^{0} + 2.303 RT \ln \frac{[B]}{[A]}$
(d) $\Delta G = -\Delta G^{0} + 2.303 RT \ln \frac{[B]}{[A]}$

34. If the concentration (c) is increased to 4 times its original value (c), the change in molar conductivity for strong electrolytes is (where b is Kohlrausch constant)

(a) 0 (b)
$$b\sqrt{c}$$
 (c) $2b\sqrt{c}$ (d) $4b\sqrt{c}$
5. The correct expression for $\left(\frac{\partial G}{\partial p}\right)_{T}$ =
(a) V (b) S (c) -S (d) -V
6. Which of the following relation is INCORRECT?
(a) $\left(\frac{\partial A}{\partial T}\right)_{V} = -S$ (b) $\left[\frac{\partial A}{\partial V}\right]_{T} = -P$ (c) $\left[\frac{\partial G}{\partial T}\right]_{P} = -S$ (d) $\left[\frac{\partial A}{\partial T}\right]_{T} = P$
7. Which of the following Maxwell's equation is NOT correct?
(a) $\left(\frac{\partial S}{\partial V}\right)_{T} = \left(\frac{\partial V}{\partial T}\right)_{P}$ (b) $\left(\frac{\partial T}{\partial V}\right) = -\left(\frac{\partial p}{\partial S}\right)_{V}$ (c) $\left(\frac{\partial V}{\partial p}\right)_{S} = \left(\frac{\partial T}{\partial S}\right)$ (d) $\left(\frac{\partial T}{\partial p}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P}$

38. The symmetric rotor among the following is:

(a) 2

3

3

3

(b) 3

$(A) CH_4$	(B) CH ₃ Cl
$(C) CH_2Cl_2$	(D) CCl_4

46. Cyclohexene on ozonolysis followed by reaction with zinc dust and water gives compound E. Compound E on further treatment with aqueous KOH yields compound F. Compound F is

8 RAJSI CHEMISTRY POINT, Near Gopalpura Flyover, JAIPUR VISIT US @ www.rajsichemistrypoint.com

PART-C

51. In a magnetic field of strength 2.349 T, the resonance frequency of ¹⁵N nuclei is 10.13MHz. The resonance frequency of ¹⁵N in a magnet of 11.745T is ?

(a) 2.06 MHz (b) 50.65 Hz (c) 50.65 MHz (d) 18.64 MHz

52. Which of the following types of silicate represents the mineral $Mg_3(OH)_2[Si_4O_{10}]$?

(a) Linear silicate (b) Cyclic silicate (c) 3-D-silicate (d) Sheet silicate

53. Correct order of substituent (X= F, Cl, Br, H) for equilibrium constant of following reaction is

(a) H > Br > Cl > F (b) F > Cl > Br > H (c) F > Cl > H > Br (d) H > F > Cl > Br54. The crystal of KCoF₃ show three absorption bands in its absorption spectrum at 7150 cm⁻¹, 15200 cm⁻¹ and 19200 cm⁻¹. In this compound Co²⁺ ion is surrounded octahedrally by six F⁻ ligands. The magnitude of CFSE is (cm⁻¹).

(a) 6440 cm^{-1} (b) 5720 cm^{-1} (c) 21690 cm^{-1} (d) 9640 cm^{-1}

55. The rate of electron transfer in the following reaction is rapid because

 $[Ru(NH_3)_6]^{+2} + [Ru(NH_3)_6]^{+3} \rightarrow [Ru(NH_3)_6]^{+3} + [Ru(NH_3)_6]^{+2}$

(a) It is an inner sphere reaction

(b) It is an outer sphere reaction

- (c) Electron transfer takes place from π^* of $[Ru(NH_3)_6]^{+2}$ to π^* of $[Ru(NH_3)_6]^{+3}$ without any transfer of any energy.
- (d) Electron transfer takes place from σ^* of $[Ru(NH_3)_6]^{+2}$ to σ^* of $[Ru(NH_3)_6]^{+3}$ without any Transfer of any energy.

56. L = (a) PPh₃ (b) PMe₃ (c) PF₃ (d) P(OMe)₃ (1) (2) (3) (4) L Rh PPh₃

Arrange the dinitrogen complex in order of their increasing N–N bond length

(a) 1 > 2 > 3 > 4 (b) 2 > 1 > 4 > 3 (c) 4 > 2 > 1 > 3 (d) 3 > 4 > 1 > 2

57. When a reduced cytochrome transfer an electron from its Fe (II) to the bound O_2

- (a) the bond order of O_2 is reduced by one and $\nu_{O2}\,$ decreases
- (b) A metal bound super oxide is formed and $\nu_{\text{O2}}\,$ decreases
- (c) A metal bound super oxide is formed and $\nu_{\rm O2}$ increases
- (d) the bond order of O_2 is reduced by one and $\nu_{O2}\;$ increases

58. The correct combination of isolobal relationship are

RAJSI CHEMISTRY POINT, Near Gopalpura Flyover, JAIPUR VISIT US @ www.rajsichemistrypoint.com

RAJSI CHEMISTRY POINT, Near Gopalpura Flyover, JAIPUR VISIT US @ www.rajsichemistrypoint.com

RAJSI CHEMISTRY POINT, Near Gopalpura Flyover, JAIPUR VISIT US @ www.rajsichemistrypoint.com

11

72. The relative values of the rate constant $(k/dm^3mol^{-1}s^{-1})$ for the following electron transfer reaction in aqueous solution respectively are

85. The equilibrium constant for an electrochemical reaction, $2Fe^{3+} + Sn^{2+} \longrightarrow Fe^{2+} + Sn^{4+}$ is $[E^{0}(Fe^{3+}/Fe^{2+}) = 0.75V, E^{0}(Sn^{4+}/Sn^{2+}) = 0.15V, (2.303RT/F)=0.06V]$ (c) 10^{30} (a) 10^{10} (b) 10^{20} (d) 10^{40} 86. Electrolysis of an aqueous solution of 1.0 M NaOH results in (a) Na at the cathode and O_2 at the anode (b) H_2 at the cathode and O_2 at the anode (c) Na and H_2 at the cathode, and O_2 at the anode (d) O_2 at the cathode and H_2 at the anode 87. The fugacity of a gas depends on pressure and the compressibility factor $Z = (= p\overline{V}.RT)$ through the relation (\overline{V} is the molar volume) $f = p.\exp\left[\int_{-D}^{p} \frac{Z-1}{p} dp\right]$ For the gases at temperature T and upto moderate pressure, this equation shows that (a) f < p, if $T \rightarrow 0$ (b) f < p, if $T \rightarrow \infty$ (c) f > p, if $T \rightarrow 0$ (d) f = p, if $T \rightarrow 0$ Given the following two relations, $x_1 d\mu_1 + x_2 d\mu_2 = 0$ (A) 88. $x_1 d\overline{V_1} + x_2 d\overline{V_2} = 0$ (B) and for a binary liquid mixture at constant temperature and pressure, the true statement is that, (a) Both the relations are correct (b) Relation A is correct, but B is not (c) Relation B is correct, but A is not (d) Both A and B are INCORRECT, Except for very dilute solutions The value of ΔU - ΔH for the relation Fe₂O₃(s) + 3C(s) \rightarrow 2Fe(s) + 3CO(g) is: 89. (a) - 3RT(b) +3RT (c) + RT(d) - RTThe figure below describes how a Carnot engine works. It starts from the adiabatic compression step 90. denoted by:

91. If the displacement vectors of all atoms in cis-butadiene are taken as the basis vectors, the characters of the reducible representation of E_1 , C_2 , σ_v (molecular plane) and σ_v ' are:

		$C_2 v$	Е	C ₂	σ_{v}	σ_{v} '	
		NUS	10	0	10	0	
		$X(\mathbf{R})$	3	-1	1	1	
			30	0	10	0	
(A) 30, 10, 30, 0	(B)	30, 0, 10, 0	(C) 30, 20	, 0, 0		(D) 30, 0, 20, 0

92. Character table of C_2v point group is

$C_2 v$	Е	C ₂	σ_{v}	σ_{v} '	
A_1	1	1	1	1	Z
A_2	1	1	-1	-1	-
B_1	1	-1	1	-1	х
B_2	1	-1	-1	1	у

If the initial and states belong to A_1 and B_1 irreducible representations respectively the allowed electronic transition from A_1 to B_1 is is

- (A) z-polarised (B) y-polarised
- (B) x-polarised (D) x, z-polarised
- 93. The character table of C_2v point group is given below in cis-butadiene molecule the vibrational modes belonging to A_2 irreducible representation are IR inactive. The remaining IR active modes are:

(a)
$$7A_1 + 5B_1 + 8B_2$$
 (b)

(c)
$$7A_1 + 3B_1 + 7B_2$$
 (d) $9A_1 + 3B_1 + 8B_2$

94. The probability of finding the particle in a dimensional box of length 'L' in the region between L/4 and 3L/4 for quantum number n = 1 is:

 $(c)\frac{1}{2}-\frac{1}{\pi}$

$$(a)^{\frac{1}{2}}$$

(A) 760/670

(c) 1495 and 2113

95. A polymer sample has the following composition

 $(b)\frac{1}{2}+\frac{1}{2}$

No of mo	lecules	Molecular weight				
10			2000			
50			4000			
40			8000			

The Poly-Despersity Index (PDI) of the polymer is

(C) 760/600

(D) 800/670

(d) 1:2:2:1

 $(d)\frac{2}{3}$

96. For HCl molecule ω = 2989.7 cm⁻¹ and ωx_e 52.05 cm⁻¹, where ω = equilibrium vibrational frequency and x_e = anharmonicity constant. The zero point energy under anharmonic potential of HCl and DCl is

- (a) 1495 and 1057 (b) 1443 and 1021
 - (d) 1443 and 2041

97.Bromine has two isotopes ⁷⁹Br and ⁸⁰Br, each have 50% abundant, In the mass spectrum of tribromomethane (CHBr₃), the highhest mass peaks are at m/z = 250, 251, 252 and 253. The ratio of the intensities of these peaks is:

(a) 2:3:3:2 (b) 1:1:1:1 (c) 1:3:3:1

98. The multiplicity of the signal in 31 P NMR spectrum of PFD₂ is (If J_{PD} > J_{PF})

(a) Triplet of doublet with intensity ratio 1:2:1

- (b) Doublet of quintet with intensity ratio 1:2:3:2:1
- (c) Quintet of doublet with equal intensity of 1:2:3:2:1
- (d) Doublet of quintet with intensity ratio 1:4:6:4:1

16 RAJSI CHEMISTRY POINT, Near Gopalpura Flyover, JAIPUR VISIT US @ www.rajsichemistrypoint.com

RAJSI CHEMISTRY POINT For JRF/NET, GATE, DRDO, BARC, IIT-JAM, RPSC and M.Sc. in CHEMISTRY 99. Which of the following is the strongest base in water? (A) (b) (d) (C) н 100. Arrange the given carbon acids in the increasing order of acidic strength Me В С D (a) A < B < D < C(b) D < C < B < A(c) C < B < D < A(d) C < A < B < DLinked answer questions 101 & 102 101. The major products X and Y formed in the following reaction sequence are: O₃, (1equiv.) MeO Li, EtOH (X) (\mathbf{Y}) 78°C, MeH / Me₂S NH3(1) X = MeO MeO X = MeO MeO,C (a) (b) ĊOMe OHO CHO X = MeO,C X = MeO MeO MeO (c) (d)CHO OHC Me COMe The reagent for selective reproduction of an aldehyde group in Y obtained in above reaction is 102. (a) H_2 (Ph₃P)₃RhCl (b) ((H₃C)₂CHCH₂)₂AlH (c) Na(CH₃COO)₃BH (d) LiAlH₄ The major product of the following reaction is : 103. Pr)4, L-(+)- Diethyl tartarate ^tBuOOH, CH₂Cl₂, -20⁰C OH 'Pr OH (a) 0, (d) **b**) (c) OOH OH 104. Identify the product from the following reaction C₈H₁₇ ONO hν

AcC

The following synthetic transformation can be achieved using 107.

- Reagents:
- (p) (i) NH_2OH / H^+ , (ii) H_2SO_4
- $(q) HN_3/H^+$
- (r) (i) NH_2OH / H^+ (ii) NaOH
- (a) (p) only(b) (p) and (q)(c) (q) and (r)

108. What is the absolute configuration of the following molecules? (NS - the molecule has no centre) Note: For the purpose of this question only, the order of stereocenters is not specified; i.e., R, S = S, R.

(d)(r) only

The following group of reaction very closely related to Hofmann involve the formation of an isocyanate, 110. name them

19

- (a) (I) Schmidt (II) Curtius (III) Lossen
- (b) (I) Lossen (II) Curtius (III) Schmidt
- (c) (I) Curtius (II) Lossen (III) Schmidt
- (d) (I) Schmidt (II) Lossen (III) Curtius

RAJSI CHEMISTRY POINT, Near Gopalpura Flyover, JAIPUR VISIT US @ www.rajsichemistrypoint.com

